(wrong string) �...

From: Tetis <gianmarco100_at_inwind.it>
Date: Wed, 29 Nov 2006 17:42:30 GMT

Il 27 Nov 2006, 17:56, eli_at_non.aol.com (Elisa Noname) ha scritto:
> Sto studiando quantistica (laurea triennale) ma, tra gli altri dubbi, ne
> ho uno che mi assilla.
> Se una particella A decade in due particelle B e C la parita' si
> conserva...
> Ma che significa dire che, ad es. , B ha spin 1/2 con parit� positiva ?
> Grazie per qualunque tipo di consiglio...

Anzitutto occorre estendere la nozione di parita'
della fisica classica in modo coerente con il linguaggio
della meccanica quantistica. La parita' e' dunque un operatore,
hermitiano, che agisce sullo spazio di Hilbert degli stati di
singola particella in modo che gli elementi di matrice per
grandezze vettoriali, come la posizione, l'impulso o
il momento di dipolo elettrico cambino segno, mentre gli elementi
di matrice di grandezze pseudovettoriali come sono lo
spin, il momento angolare, il momento magnetico rimangano
invariate.

Questa e' la definizione di base.
Da questo discendono una quantita' di conseguenze.
La piu' elementare e' che un sistema di particelle con
parita' intrinseca positiva ed il cui momento angolare
orbitale sia definito dal numero quantico l , acquisisce per effetto
della parita' un segno pari a (-1)^(l). Ad esempio il fondamentale
di un atomo di idrogeno ha parita' 1, Il fondamentale di un
atomo di litio ha parita' intrinseca -1, perche' il suo momento
angolare orbitale e' -1.

Se non ci fossero una quantita' di fenomeni associati con
la fisica delle particelle non avrebbe pero' molto significato
assegnare una parita' intrinseca ad ogni particella.

Per apprezzare i dettagli teorici della forza di questa definizione
occorre andare avanti nello
studio. Se e quando incontrerai la teoria dei campi quantizzati
scoprirai che lo stato di un sistema di particelle puo' essere pensato
come l'evoluzione di un complesso di "campi quantizzati"
in interazione. La conservazione della parita' corrisponde
molto semplicemente alla circostanza che essa commuta
con l'hamiltoniana di interazione.

Se la parita' e' una grandezza conservata significa
dunque che l'operatore suddetto commuta con
l'Hamiltoniana di interazione e puo' essere scelta una
base per lo spazio degli stati di singola particella su
cui il quadrato dell'operatore di parita' agisca in modo
diagonale.

Questo comporta che ogni particella acquisisce,
per effetto della parita' un fattore di fase che dipende
unicamente dalla specie. Una fase per i neutroni, una
per gli elettroni, una per i pioni, etc... La definizione
dell'operatore di parita' e' libera nella misura in cui
per insiemi di particelle che non sono connessi da
una evoluzione hamiltoniana questa puo' essere scelta
liberamente. Ad ogni modo poiche' ogni particella nota
e' stabile o e' instabile, nei processi in cui la parita' risulta
conservata bastera' stabilire la parita' intrinseca dei
prodotti di decadimento, ovvero delle particelle stabili,
per ottenere, come in un puzzle, le fasi delle altre particelle.

Per molto tempo si e' creduto che questo metodo di
assegnazione delle parita' fosse infallibile e generale
perche' non si aveva idea dell'esistenza di processi
che violano il principio di conservazione della parita'.
In altre parole oggi si includono, per spiegare alcuni
esperimenti, dei termini,
nella hamiltoniana totale della fisica delle particelle che
non commutano con la parita'. Se la parita', come criterio
di classificazione e' sopravvisuta a questa scoperta e'
solo perche' esistono ben distinte classi di fenomeni, corrispondenti
a distinti termini della stessa hamiltoniana del modello standard,
in cui la conservazione della parita' puo' essere imposta
coerentemente con le osservazioni.

Dunque la parita' di ogni particelle sub-nucleare
e' definita in rapporto alle parita' di particelle che
sono con essa coinvolte in un processo naturale di
decadimento o di reazione sub-nucleare. Questo
metodo di assegnazione della parita' e' stato esteso,
ancora piu' indirettamente, fino alle particelle
che, entro il modello standard, sono considerate i
costituenti elementari, quindi quark e leptoni.

La convenzione
adottata nel modello standard, e'
che le particelle cariche elementari hanno parita'
intrinseca positiva, per quanto riguarda le antiparticelle
corrispondenti la questione e'
delicata, perche' sebbene si possa essere tentati di
dire che hanno parita' intrinseca negativa, carica opposta,
medesimo spin, ( e medesimo isospin ) e' anche vero
che occorre confrontare questa ipotesi con una solida
fenomenologia. E' allora il momento di fare un esempio:

Per i leptoni un argomento puo' essere questo: la parita' intrinseca
dei fotoni e' stabilita sulla base dell'elettromagnetismo, infatti
l'assorbimento
di un fotone da parte di un atomo comporta sempre una variazione
unitaria del momento angolare totale, e quindi la parita' dell'atomo
cambia. Se la parita' del fotone e' -1 la parita' intrinseca dell'elettrone
e dell'antielettrone non possono che essere opposte. In verita' una
giustificazione solida di questa affermazione che e' corretta richiede
di chiamare in causa anche l'operatore di coniugazione di carica,
ma fornisce un'idea del modo in cui il puzzle delle parita' intrinseche
e' stato ricostruito.

Rimane molto dibattuta, oggi, visto le indicazioni
indirette a favore di una massa dei neutrini, la possibilita'
di una estensione del modello standard, e con queste
estensioni e' discussa la possibilita' che oltre ai leptoni,
ed ai quark siano richieste delle particelle elementari
neutre e coincidenti con le rispettive antiparticelle.










> Eli..
>
> --
>
> questo articolo e` stato inviato via web dal servizio gratuito
> http://www.newsland.it/news segnala gli abusi ad abuse_at_newsland.it
>

--------------------------------
Inviato via http://arianna.libero.it/usenet/
Received on Wed Nov 29 2006 - 18:42:30 CET

This archive was generated by hypermail 2.3.0 : Fri Nov 08 2024 - 05:10:13 CET