Michele Pendin ha scritto:
> La legge di newton per un corpo di massa variabile si scrive
> F = dp/dt = d/dt[m(t)*v(t)] = (dm/dt)*v + (dv/dt)*m
> (ho tralasciato i simboli dei vettori...).
> Ora, se io considero un punto a massa variabile avente velocit�
> costante, debbo sopprimere il termine (dv/dt)*m, e l'equazione sopra
> rimane F = (dm/dt)*v .
...
Come ti � stato gi� risposto quella che hai scritto � la formulazione pi�
generale della legge della forza di Newton, la quale, nel caso di corpi
che mantengono inalterata la loro massa durante il moto, assume la forma
canonica:
F = m*a = m*(dv/dt) (*);
mentre nel caso particolare di corpi a velocit� costante che disperdono
parte della loro massa assume la forma particolare che hai scritto, ovvero
F = (dm/dt)*v (**).
> Cosa significa? Che forza � questa? da dove proviene? A cosa serve?
Puoi applicare questa forma particolare della legge della forza di Newton
ad un semplice caso.
Supponi di avere un corpo in moto a velocit� costante in un mezzo
resistente (aria, acqua, ecc.), che si muove sulla base del principio del
razzo, emettendo materia a tasso costante [dm/dt = costante]. A questo
punto sapendo che sul corpo agisce (per velocit� non troppo grandi) una
forza di attrito della forma Fa = -K*v puoi riscrivere la (*) nel modo
seguente:
-K*v = (dm/dt)*v => -K = (dm/dt) (**).
La (**) ti dice che (trascurando fenomeni dinamici transienti all'inizio
del moto) esiste un valore *critico* della (dm/dt), variabile a seconda
del mezzo, per cui il corpo in questione si muove a velocit� costante.
Saluti,
Aleph
--
questo articolo e` stato inviato via web dal servizio gratuito
http://www.newsland.it/news segnala gli abusi ad abuse_at_newsland.it
Received on Tue Feb 15 2005 - 10:19:18 CET