(wrong string) �

From: R.H. <Robert-Hoeppner_at_web.de>
Date: Mon, 21 Jan 2002 16:26:40 +0100

Non parlo molto italiano, ma credo che la funzione sia cos�:

F(n) = 1 - (365!/(n!*(365-n)!))/((364+n)!/(n!+364!))

Sembra un po dificile, ma tutto che l'ho fatto � calcolare la probabilit�
del contrario ("nessuno a il suo compleanno il stesso giorno") e ho
sottratto il resulto da 100% (=1).
Questa probabilit� si pu� calcolare se si divida il numero di casi in questi
tutta la gente (n) a compleanno in giorni diversi con il numero di tutti
casi possibile (la gente pu� anche festeggiare il compleanno lo stesso
giorno). Il primo numero sono tutte le combinazione di n elementi presi da
365 giorni senza ripetere i giorni e il secondo numero corresponde a tutte
le combinazione die n elemente presi da 365 giorni con ripetere i giorni.

ciao

Roberto

"Gabriele De Chiara" <Gadec_at_katamail.com> schrieb im Newsbeitrag
news:a2fih5$g3b$1_at_newsreader.mailgate.org...
> Ad una festa partecipano n persone. Qual'� la probabilit� che, presenti
alla
> festa, ci siano almeno due persone che festeggiano il compleanno lo stesso
> giorno?
> Qualcuno sa trovare una forma analitica della funzione P(n) che d� la
> probabilit� in funzione del numero di persone?
>
> Suppongo che la funzione sia costante e pari ad 1 per n > 365.
>
>
> Ciao
Received on Mon Jan 21 2002 - 16:26:40 CET

This archive was generated by hypermail 2.3.0 : Fri Nov 08 2024 - 05:10:34 CET