Re: Accelerazione

From: Stefano <nd_at_nondisp.com>
Date: Sun, 25 Feb 2001 14:17:12 +0100

> Stasera, dopo cena, io, mio padre e mio fratello ci siamo messi a parlare
di
> automobili e di accelerazione:

Fa male alla digestione :)

> volevamo calcolare quanti metri percorre una macchina che fa da 0 a
100km/h
> in 10 secondi. Poi ci siamo impegolati su alcuni ragionamenti.
> Premesso che S=V*T ovvero spazio=velocit�*tempo e che A=V/T ovvero
> accelerazione=vel/tempo.
>
> 1) Se due macchine impiegano entrambe 10 secondi ad arrivare da 0 a
100km/h,
> devono forzatamente percorrere lo stesso spazio? S dipende da V e quindi
da
> A per cui si ha la relazione S=AT^2? Giusto no?

No.
Si ricava che

S= X0 + V0*T + (1/2)A*(T^2)

dove X0 � lo spazio iniziale che si pone uguale a zero in questo caso
V0 � la velocit� iniziale che � uguale a 0 se partono da ferme.
A in questo caso � l'accelerazione media che perch� sia valida la formula
deve essere
pressoch� costante(nel nostro caso Vmax=100Km/h=100 000 m/h= 27,8 m/s e
quindi
A=27,8/5=5,56 m/s^2)

> Quindi � possibile
> percorrere al massimo 33 m/s * 10 s? Questo per� non � vero, nel senso che
> in questo modo si calcola S come se la macchina partisse gi� lanciata a
100
> km/h!

Mettendo i dati nella formula se partono da ferme e si considera uno spazio
percorso
iniziale nullo e l'accelerazione costante, in un tempo di 10s si ha

S= (1/2) (5,56)*(10^2)= 278 m

Lo spazio � quindi lo stesso per le due auto ma devono essere soddisfatte
le codizioni
iniziali e l'accelerazione deve essere pressoch� costante. Altrimenti se per
esempio:
-un'auto delle 2 (Auto Numero1) va da 0 a 30Km/h nei primi 5 secondi e da
30Km/h a 100Km/h nei
5 secondi successivi. In tutto sono sempre 10 secondi e la velocit� massima
raggiunta � 100Km/h quindi
l'accelerazione media � la stessa.
-l'altra auto invece(Auto Numero 2) ipotizziamo che vada da 0 a 80Km/h in 5
secondi e nei successivi 5
secondi da 80Km/h a 100Km/h. Ha quindi la stessa accelerazione media
dell'auto Numero 1. Ma..
calcolando lo spazio percorso nei primi 5 secondi dalle auto 1 e 2 e
calcolando quello percorso nei successivi
5 secondi si ottiene:

Per l'auto 1:

    primi 5 secondi ( V=30Km/h=8,3 m/s , V0=0, S0=0, A=8,3/5=1,66 m/s^2 )
    S=(1/2) (1,66)*(5^2)= 20,75 m

    successivi 5 secondi ( V=100Km/h=27,8 m/s, V0=30Km/h=8,3 m/s, S0=20,75m
, A=(27,8-8,3)/5= 3,9 m/s^2)
    S=20,75+8,3*5+(1/2)*(3,9)*(5^2)=20,75+41,5+48,75= 111 m

Per l'auto 2:

    primi 5 secondi ( V=80Km/h=22,2 m/s , V0=0, S0=0, A=22,2/5= 4,44 m/s^2)
    S=(1/2)*(4,44)*(5^2)=55,5 m

    successivi 5 secondi( V=100Km/h=27,8 m/s, V0=80 Km/h=22,2 m/s , S0=55,5
m, A=(27,8-22,2)/5=1,12 m/s^2)
    S=55,5+22,2*5+(1/2)*(1,12)*(5^2)=55,5+111+14= 180,5 m


> 2) Quindi, come � possibile calcolare S, se V parte da 0 e arriva a 100
dopo
> 10 secondi? Devo usare una V media? Chess�, un DeltaV/2, cio� 50 km/h?
Devo
> usare degli integrali con misure infinitesime? Fissato T, S dipende solo
da
> A (e quindi da V)? Se una Mercedes sta ferma 9 secondi, accelera e
> raggiunge, fra il nono e il decimo, in un solo secondo quindi, i 100 km/h,
> percorre piu spazio di una Cinquecento che sin dal primo secondo, in modo
> graduale, accelera e arriva allo scadere del decimo, ai fatidici 100 km/h?

Penso che con le formule precedenti abbia gi� risposto.
Per ricavare le formule � necessario ricorrere agli integrali e alle
derivate(quindi concetti
che sottointendono "misure infinitesime") ma soprattutto abbandonare la
definizione
di velocit� media ed accelerazione media bens� il loro valore istantaneo.

v(t)=ds/dt
a(t)=dv/dt

poi per ricavare l'espressione dello spazio in funzione del tempo si
ipotizza a= costante.


> Grazie mille per le delucidazioni


Prego. Spero piuttosto di non aver fatto errori.. :)

Ciao


Stefano.
Received on Sun Feb 25 2001 - 14:17:12 CET

This archive was generated by hypermail 2.3.0 : Fri Nov 08 2024 - 05:10:37 CET