Re: Teoria Ondulatoria del Campo

From: Valter Moretti <moretti_at_science.unitn.it>
Date: 2000/11/07

"Massimo S." wrote:

> Sar� che non riesco a trovare soddisfaciente la MQ, d'accordo d�
> risultati sono in accordo con gli esperimenti, ma quello che non mi va
> gi� non � la MQ in se ma la cosiddetta "interpretaione di Cophenaghen
> dell MQ".
> Ma siamo sicuri che l'equazione di Schrodinger (non so se l'ho scritto
> bene) descriva una densit� di probabilit� e non una "massa distribuita".
> E' vero che quando S. trovo tale eq. propendeva per questa seconda
> ipotesi?

Ciao, ci sono varie persone che cercano interpretazioni alternative a quella
strandard, ma ti assicuro che non si riesce a dire molto (vedi il capitolo
corrispondente in "Filosofia della Fisica" a cura di G. Boniolo).
Tutte le interpretazioni "eretiche" fino ad ora prodotte,
alla fine introducono dei problemi e fino ad ora non c'e' un'interpretazione
eretica da preferirsi rispetto a quella standard se si tiene conto dei nuovi
problemi introdotti...

Riguardo al fatto che tutta la funzione d'onda descriva un mezzo continuo
(carico o meno) c'e' stata una lunga discussione all'inizio della nascita
della MQ su questo punto, e Schroedinger stesso protendeva per tale
interpretazione che tuttavia non regge assolutamente di fronte ai risultati
sperimentali da molteplici punti di vista, tanto che e' stata abbandonata
quasi subito...

> Poi vorrei alzare un'altra questione anche se so che sar� la
> millionesima volta, per� non riesco a convincermi di come sia possibile
> che un ente sia allo stesso tempo una particella ed un'onda. Non so se
> hai mai sentito parlare della logica Fuzzy che permette di attribuire ad
> una proposizione matematica non solo di essere falsa o vera, ma anche un
> valore intermedio di verit� (in genere tra 0 e 1, per� attenzione non si
> tratta di probabilit�).

La logica fuzzy per quanto ne capisco si basa
sulla teoria della probabilita' classica e su un reticolo booleano
di proposizioni, mentre la MQ non rientra in tale categoria.
Per essere formulata come teoria quasi-probabilistica, devi avere un
reticolo quasi-boleano di proposizioni e non boleano come nei calcoli
proposizionali comuni.

**In soldoni** mentre nella logica "comune" quando hai due proposizioni
P e Q, puoi costruire la proposizione "P & Q" e puoi dare un grado di certezza
a questa con una misura di probabilita' partendo da quelle di P e Q,
in MQ ci sono proposizioni P e Q per cui P & Q non ha senso e tanto meno
non ha senso pretenderne di calcolarne la probabilita'.
Malgrado la stranezza, si riesce a costruire un oggetto matematico molto
elegante (l'insieme dei proiettori ortogonali su uno spazio di Hilbert
separabile, dotato di una misura indotta da un operatore di classe traccia)
che e' in grado di supportare "lo stato delle cose" che si trova negli
esperimenti e non solo: lo schema matematico ha permesso di fare previsioni
puntualmente verificate dall'esperienza, anche quando sembravano
veramente cozzare contro il senso comune...Dal mio punto di vista significa
che lo schema matematico trovato si avvicina piu' alla realta' del nostro
senso comune.


Altro esempio, la probabilita' condizionata classica e' sostanzialemnte
differente da quella quantistica. Nel mondo classico le probabilita'
di "eventi composti" si ottengono combinando quelle degli eventi elementari
in un certo modo, nel mondo quantistico le probabilita' si combinano passando
per un concetto nuovo: "l'ampiezza di probabilita'" che e' un *numero complesso*
ed e' solo tramite questo nuovo concetto che si puo' introdurre il *principio
di sovrapposizione degli stati* che e' alla fine il centro della MQ.

>Bene la dualit� onda-particella mi sembra
> schizzofrenica perch� mi pare che dice che un ente � allo stesso tempo
> al 100% onda e al 100% particella.

Intanto la questione "onda corpuscolo" e' un punto di vista superato
dalle moderne impostazioni. Anche se la natura del problema permane
in un certo senso.
Pero' non e' come dici: la particella non e' *contemporaneamente*
due o piu' cose contraddittorie: quando si comporta in un modo P,
non si comporta in un altro Q, la contraddizione la avresti se
avesse senso la proposizione o stato di cose "P & Q", ma NON ha senso
come dicevo sopra...benche' sia molto sottile riuscire a trattare
con queste cose. Lo schema standard della MQ, piu' o meno costruito
da Dirac ha il pregio di "evitare" le domande pericolose mentre si
eseguono i calcoli. Tuttavia se uno vuole aprire la scatola cinese
del formalismo vede che le cose stanno davvero in piedi anche
riguardo alle domande piu' scabrose, anche se spesso
e' abbastanza difficile (nel senso che bisogna studiare un po' e
chiarirsi molte distinzioni sottili) riuscire a maneggiare con
consapevolezza tutto il formalismo.
Per esempio se prendi il "fisico quadratico medio" ti dira' che la
probabilita' di cui si parla interpretando la funzione d'onda e'
una probabilita' del tipo classico, o piu' probabilmente ti dira'
che non si e' mai posto il problema, pero' come ti ho detto
sopra le cose non sono per niente cosi' banali...

Ciao, Valter
Received on Tue Nov 07 2000 - 00:00:00 CET

This archive was generated by hypermail 2.3.0 : Fri Nov 08 2024 - 05:10:37 CET