[usare un fixedpitch font]
Avevo pensato che in 2D il moto di una foglia (in assenza di vento) si poteva
schematizzare in questo modo, piu' o meno :
x : oscillatore smorzato
y : oscillatore smorzato con in piu' la forza peso
insomma, le equazioni differenziali sarebbero :
/ .. .
| m X = -k X -B X
< .. .
| m Y = m g -k y -B y
\
Dove queste vanno risolte con opportune costanti d'integrazioni, come
velocita' iniziale in tutte le componenti nulla, distanza dall'oscillatore
iniziale = tot, etc.
------------
La costante B potrebbe essere trovata approssimativamente vedendo una tabella
con i cx fatti da Newton e cercare una forma bidimensionale di una foglia.
Insomma, se consideriamo anche un moto un po' turbolento possiamo proprio
applicare la formula di Newton invece di quella di Stokes, cosicche' il moto
non e' piu' laminare e dipende quadraticamente dalla velocita' secondo :
Fa = (Cx)S(rho)v^2
con rho = densita' dell'aria.
------------
La costante k e' assolutamente arbitraria e si puo' trovare a occhio finche'
non si e' raggiunti un risultato soddisfacente.
------------
Per inserire il vento forse si dovrebbe inserire una costante
all'integrazione delle y, dando una velocita' iniziale y non nulla.
------------
Le equazioni differenziali una volta integrati (senza vento) darebbero :
*******
X : moto oscillatorio smorzato
X(t) = Xo * exp(-Bt/2m) * sin(wt+phi)
w= sqrt(k/m - (B^2)/(4*m^2) )
*******
per l'altra equazione in y bisogna trovare una soluzione particolare della
non omogenea, e non mi ricordo come si fa :)
--
>Darth Vader
ICQ: 6486772 | FidoNet: 2:335/801.79
[Darth.Vader(at)TiscaliNetDOTit]
Received on Sun Dec 19 1999 - 00:00:00 CET