Re: Lavoro...in ascesa

From: Giorgio Bibbiani <giorgio_bibbianiTOGLI_at_virgilio.it>
Date: Wed, 23 Jan 2008 09:17:19 +0100

"EF" ha scritto:
> Quanto lavoro si deve fare per sollevare di 1 metro, in verticale, un peso
> di 1 Newton?
> E su un piano obliquo?

Suppongo che il corpo da sollevare abbia la stessa velocita'
nel punto di partenza e in quello di arrivo (ad es. potrebbe
partire da fermo e arrivare con velocita' nulla), che in entrambi
i casi venga sollevato in modo da superare un dislivello di 1 m
in verticale, e suppongo che si possano trascurare gli attriti.
Per il teorema di conservazione dell'energia meccanica,
il lavoro eseguito per sollevare il corpo e' uguale e opposto
al lavoro eseguito sul corpo dalla forza di gravita', quest'ultimo
in entrambi casi vale -1 newton * 1 m = - 1 joule
(e' negativo perche' la proiezione dello spostamento del corpo
nella direzione della forza di gravita' e' opposta alla forza di
gravita'), quindi il lavoro eseguito per sollevare il corpo
vale in entrambi i casi 1 joule.

Che il lavoro debba essere uguale nei due casi lo si puo'
comprendere con questo ragionamento euristico:
supponiamo ad es. per assurdo che il lavoro eseguito
per sollevare il corpo lungo il piano inclinato sia minore del
lavoro eseguito per sollevare il corpo in verticale,
allora potrei immaginare di far cadere il corpo di peso 1 N
in verticale dall'altezza di 1 m, la forza di gravita'
eseguirebbe quindi sul corpo in caduta un lavoro di 1 J,
cioe' gli cederebbe 1 J di energia che potrei sfruttare
usando una qualche macchina per sollevare lungo un piano
inclinato un corpo di peso 1 N ad una altezza maggiore di 1 m,
quindi potrei far cadere nuovamente il corpo in verticale
ecc. ecc., in questo modo potrei sollevare un corpo
ad una altezza arbitraria senza spendere energia,
il che e' assurdo!

Ciao
-- 
Giorgio Bibbiani
Received on Wed Jan 23 2008 - 09:17:19 CET

This archive was generated by hypermail 2.3.0 : Sun Nov 24 2024 - 05:10:13 CET