Re: Curiosità da motociclista

From: Pangloss <marco.kpro_at_tin.it>
Date: 16 Feb 2007 17:36:11 GMT

[it.scienza.fisica 15 feb 2007] Franco ha scritto:
> Prova a inclinare andando dritto ovviamente senza compensare lo
> spostamento del baricentro della moto con lo spostamento del corpo, e
> vedi se stai su o se cadi :)

Questa critica evidenzia il punto sul quale ci fraintendiamo!
Una moto o una bici con lo sterzo bloccato e' comunque in equilibrio
instabile, non c'e' momento angolare che tenga!

La condizione di equilibrio tg(alpha)=v^2/gr fra momento del peso e
momento centrifugo puo' essere mantenuta solo tramite continue
correzioni del raggio r della curva, ossia tramite continui piccoli
interventi sullo sterzo.

A bassa velocita' questo continuo controllo dello sterzo e' operato
(consciamente o meno) dal pilota, che ha il suo bel daffare per
contrastare l'instabilita' del veicolo a due ruote.

Io sostengo che al crescere della velocita' il controllo dello sterzo
e' invece operato dal momento angolare, ma non ho mai invocato una
banale fissita' dell'asse giroscopico (valida solo in caso di momenti
delle forze equilibrati).

La seconda legge della dinamica dei sistemi e l'esperienza mostrano che:
- se prevale il momento del peso l'asse della ruota sterza in verso
tale da ridurre r ed aumentare quindi il momento centrifugo ristabilendo
l'equilibrio;
- se invece prevale il momento centrifugo la ruota sterza in verso tale
da aumentare r e ridurre quindi il momento centrifugo ristabilendo ancora
l'equilibrio.

Come si vede le correzioni sullo sterzo che a bassa velocita' sono
affidate al pilota, ad alta velocita' sono effettuate spontaneamente
dal momento angolare.
Di fatto l'equilibrio della moto passa sotto il controllo di un
'autopilota' estremamente sensibile, rapido e preciso, che sostituisce
con vantaggio il tremolante 'pilota umano', sia in rettilineo sia in
curva.

Ciao.

-- 
     Elio Proietti
     Valgioie (TO)
        
Received on Fri Feb 16 2007 - 18:36:11 CET

This archive was generated by hypermail 2.3.0 : Wed Feb 05 2025 - 04:23:21 CET