Re: Velocità relativistiche e gravitÃ

From: Aleph <no_spam_at_no_spam.it>
Date: Mon, 17 Oct 2011 15:30:04 +0200

Elio Fabri ha scritto:

...
> La seconda e' che di quello che dice Okun io non capisco niente.
> Ho qui davanti l'articolo, e copio la frase rilevante:
> "In the simplest case of a light relativistic body such as a photon or
> an electron of mass m traveling with energy E and velocity c = beta*c
> in the gravitational field of a very heavy body of mass M such as the
> Earth or the Sun, the force acting on the light body has the form (eq.
> 16)"

> Non capisco il contesto: RR o RG?
...
> Qualcuno sa dare indicazioni dell'origine e giustificazione di quella
> formula?

RG.
Lo dice chiaramente qui http://snipurl.com/1h9e3q (vedi pag.23 e 24;
interessante tutta la discusssione a partire da pag. 17 con le reazioni al
suo articolo su Phisycs Today).

A pag. 25 c'� una formula "esatta" (discretamente incasinata) ottenuta da
Engelbert Schucking, che in un limite opportuno (GN*M/2*r*c^2 << 1)si
riduce alla formula di Okun.

Sempre a pag. 25 afferma che la "sua" formula (16) la si trova (ricavata
con considerazioni semiempiriche) nel libro di M.G. Bowler (vedi referenza
n. 2).

...
> Aleph ha scritto:

> >> Non puoi ragionare sulla forza gravitazionale in RR come se fosse una
> >> forza elettrica

> > Ok, questo è pacifico, ma in questo modo si ritorna nuovamente al
> > tema di partenza del thread: mettiamo in fila alcuni punti fermi.
> > ...
> > La gravità non è definibile coerentemente (cosa peraltro nota) nel
> > quadro teorico della R.R.?
> > Perfetto.

> E allora il tuo problema che cosa significa?

Nelle mie intenzioni era un ulteriore elemento a favore dell'impossibilit�
di trattare la gravit� in R.R. in modo coerente e, ancor di pi�, di
considerare la "massa relativistica" come una possibile "massa
gravitazionale" per corpi relativistici.

> > In quanto al fatto che il sistema non sarebbe inerziale, in realtà lo è
> > con eccellente approssimazione visto che Okun sta considerando un corpo
> > della massa di un elettrone nel campo gravitazionale di un corpo delle
> > dimensioni del Sole o della Terra.

> Questo non mi e' chiaro.
> Potresti spiegarmelo alla luce di quanto ho scritto sopra?

Ho fatto confusione.
In effetti Okun chiarisce che la eq. (16) vale nel sistema del laboratorio
che � "localmente non inerziale" ed � questo quello che conta.

Saluti,
Aleph

--

questo articolo e` stato inviato via web dal servizio gratuito
http://www.newsland.it/news segnala gli abusi ad abuse_at_newsland.it

Received on Mon Oct 17 2011 - 15:30:04 CEST

This archive was generated by hypermail 2.3.0 : Sun Nov 24 2024 - 05:10:26 CET