"dumbo" <_cmass_at_tin.it> wrote in message news:<aLxkb.16197$e5.590463_at_news1.tin.it>...
>
> .... .... ....
>
> > Se la dimensione dell'universo e' dell'ordine
> > di grandezza dei 10 miliardi di anni-luce, si vede subito che
> > questo livello permesso di energia minima
>
> cio� W ~ h c / R (h cost. di Planck, c vel. della luce)
>
> >non puo' scendere al di sotto dei 10^(-66) grammi moltiplicato per c^2,
>
> cio� 10 ^ (-45) erg.
>
> > Cioe' esisterebbe un limite inferiore per la frequenza delle onde e.m.,
> > suppongo,
>
> certo, nello spazio chiuso � inevitabile.
>
> > come pure per le masse delle particelle.
>
> aspetta: forse corri troppo, non mi sembra
> cos� evidente l'implicazione: " c'� un minimo per le
> frequenze delle onde e.m., ergo c'� un minimo per
> le masse " .
> ... ... ...
Per il mio livello di conoscenze non sono in grado di seguirti
qui in particolare, cmq grazie Corrado per tutte le precisazioni
e soprattutte per le correzioni ai miei strafalcioni.
>
> >Forse esistono delle particelle sconosciute (oppure si tratta
> >dei neutrini?) con massa di circa 5 * 10^(-65) grammi.
Rettifico ~ 1 x 10^(-65) grammi, semmai.
>
> se ricordo bene (ma forse ricordo male) le misure sulla
> massa del neutrino suggeriscono valori molto maggiori
> (di almeno trenta ordini di grandezza).
Hai ragione... (vedi seguito)
> Per� quella che dici potrebbe essere la massa del fotone
> o magari del gravitone, ammesso che il gravitone esista.
A proposito, ho preso dei dati dal sito:
http://image.gsfc.nasa.gov/poetry/ask/a11562.html
Qui si citano le ricerche di Goldhaber e Nieto per determinare i
limiti superiori delle masse, con metodo sperimentale astrofisico (su
scala intergalattica, anzi fra cluster di galassie), condotte per
molti anni.
Riassumendo risultati sperimentali di vario genere:
massa dell'elettrone (per confronto): 9 x 10^(-27) grammi
max. massa per il neutrino elettronico: 2 x 10^(-31) g.
max. massa per il fotone (se ha senso): 4 x 10^(-48) g.
max. massa per il gravitone (se esiste): 2 x 10^(-62) g.
La stima basata invece sulla M.Q. applicata ad un universo a spazio
finito
dell'ordine di 10-20 miliardi di anni-luce di estensione, porterebbe
a circa m* ~ 10^(-66) - 10^(-65) grammi per la massa minima.
Dati i valori sperimentali sopra riportati per i limiti superiori
accertati,
non si puo' escludere che proprio quest'ultimo valore possa accomunare
il fotone (se ha senso parlarne di massa, ma in ogni caso si puo'
parlare
del suo valore equivalente: h f* / c , dove f* e' la frequenza minima)
ed il gravitone (ammesso che davvero esista - o forse del gravitino?).
>
> Hai notato un particolare? L'energia
> W ~ 10^(-45) erg � circa l'energia
> di legame gravitazionale di un adrone tipico,
> G m^2 / r, con m ~ 10^(-25) g, r ~ 10(-13) cm;
> Chiss� se � una coincidenza o il sintomo di un legame
> profondo fra m ed R , cio� fra la microfisica e la cosmologia.
> Ciao,
> Corrado
Molto interessante ... da cui, dato che il 'raggio' del protone e'
circa la meta' del raggio 'classico' dell'elettrone, se non ho
sbagliato ora i conti
verrebbe fuori che il rapporto fra raggio cosmico e raggio Compton del
protone sarebbe uguale al rapporto di intensita' fra le forze
elettrica
e gravitazionale elettrone-protone, moltiplicato per 137^2 circa.
E' plausibile che la cosmologia e la microfisica abbiano un legame
profondo e intrinseco, pero' sorge il problema della espansione col
tempo di R(universo) (almeno cosi' appare...), e allora se la
relazione
deve mantenersi, cosa cambia? Forse col tempo diminuisce G , e/o
diminuiscono m(protone), m(elettrone) in proporzione e cosi' pure le
masse di tutte le particelle? E' chiaro che se e' vero il discorso
quantistico che ho posto per la 'massa minima' m* per un universo di
raggio R all'epoca t, tale m* decrescera' col tempo. Se si tratta
del gravitone, a maggior ragione diventerebbe plausibile che
diminuisca la cosiddetta 'costante' G di gravitazione, cioe'
la stessa intensita' della forza gravitazionale col tempo. Forse
aveva ragione Mach: la massa inerziale di ogni singola particella
dipende da quella di tutte le altre nel cosmo, anziche' derivare
l'inerzia riduzionisticamente da interazioni col 'vuoto quantistico'
locale (come invece vorrebbero molti teorici di fisica delle
particelle).
Si vedra' prossimamente chi aveva ragione...
ciao
Attilio
Received on Tue Oct 21 2003 - 12:34:00 CEST