Re: Integrale

From: Giorgio Pastore <pastgio_at_units.it>
Date: Sat, 2 Jul 2022 11:11:12 +0200

Il 01/07/22 18:50, El Filibustero ha scritto:
> Dimostrare elementarmente (senza integrali ellittici) che, qualunque
> sia u in ]-1,1[,
>
> integrale{dt=0..arccos(u)} 1/sqrt(1+uu-2u*cos(t)) =
>
> integrale{dt=arccos(u)..pi} 1/sqrt(1+uu-2u*cos(t))

Notazione un po' strana: u รจ la variabile di integrazione e appare nei
limiti di integrazione?
Received on Sat Jul 02 2022 - 11:11:12 CEST

This archive was generated by hypermail 2.3.0 : Wed Feb 05 2025 - 04:23:16 CET