Re: interessante problema di magnetostatica: senso fisico di un integrale non assolutamente convergente
Bruno Cocciaro wrote:
> Io non so cosa sia la costante di Madelung, ma scommetterei che in quel caso
> ci saranno dei motivi fisici per dare senso fisico alla somma eseguita in un
> ben determinato modo.
Lo ha spiegato bene Giorgio Pastore qualche giorno fa.
> Gli integrali ai quali e' possibile associare un significato fisico sono
> quelli fatti su domini sferici,
Dipende. Nel caso di Madelung per esempio le somme raggruppano le
cariche in maniera che non e' necessariamente a simmetria sferica.
> Non saprei. Nella domanda originaria mi pareva di leggere in maniera piu' o
> meno sottintesa che ci dovesse essere un qualche senso fisico da associare
> all'integrale su "tutto lo spazio".
Si', una connessione al momento di dipolo della sfera. Se questo
significato ha da esserci (come ho detto, penso proprio di no) non puo'
essere connesso alla forma del laboratorio, ma solo alla sfera stessa.
L'integrale su tutto lo spazio evita proprio un riferimento, spurio, al
laboratorio. Se poi questo integrale non esiste, o vale 0, allora
chiudiamo bottega e ci occupiamo d'altro.
Received on Wed Feb 25 2009 - 13:55:58 CET
This archive was generated by hypermail 2.3.0
: Mon Feb 10 2025 - 04:23:33 CET