equazioni del moto in presenza di attrito

From: gnappa <lagiraffa77_at_yahoo.it>
Date: Sun, 10 Jun 2007 17:01:56 +0200

ciao,
ho un sistema composto da un piano orizzontale rivestito di carta da
forno su cui faccio muovere un oggetto di acciaio "trainato" da un
bicchiere pieno d'acqua appeso all'oggetto attraverso una carrucola.


                ______
oggetto (M)-> |____|----------
piano ======================== O <--carrucola (M')
                                 |
                                 |
                                /_\
                                | | <-- bicchiere (m)
                                |_|

devo studiare il moto dell'oggetto e possibilmente misurare il
coefficiente d'attrito tra le due superfici a contatto (carta da
forno/acciaio)

Per riprodurre i dati sperimentali, ho visto che non sono trascurabili
n� l'attrito dell'aria sul bicchiere, n� il momento d'inerzia della
carrucola.

Vorrei sapere se l'equazione che ho scritto � corretta:
ho impostato la seconda equazione cardinale rispetto all'asse di
rotazione della carrucola:

   T = r*mg - r*bv - r*uMg = dL/dt = r*(m+M)dv/dt + Idw/dt

dove r � il raggio della carrucola, b il coefficiente di attrito viscoso
dell'aria sul bicchiere, u il coefficiente di attrito radente che dovrei
misurare, I il momento d'inerzia della carrucola, w la sua velocit�
angolare.
Essendo I=1/2M'r^2 e v=wr, l'eqauzione si riduce a:

   mg - bv - uMg = (m+M+M'/2)dv/dt

cio� � come l'equazione del moto che considera peso del bicchiere,
attrito radente e viscoso ma trascura la carrucola, modificata solo per
il termine dell'inerzia che � aumentata di M'/2.

Mi sembra quindi di poter concludere che:

1) se riempio il bicchiere in modo tale da avere moto uniforme, oppure
alla velocit� di regime raggiunta a causa dell'attrito viscoso, dalla
misura della velocit� si trova l'attrito dinamico dall'equazione:

   mg - bv - uMg = 0 -> v = mg/b - uMg/b

quindi, essendo anche b incognito, u si trova da un fit lineare di v(m),
e risulta indipendente dalla massa M' della carrucola, quindi anche dal
fatto che la si consideri trascurabile o meno.

2) nei primi istanti, il moto � approssimativamente uniformemente
accelerato con legge (l'oggetto parte da fermo):

  x(t)= 1/2 (mg-uMg)/(m+M+M'/2) t^2

quindi da un fit parabolico sui dati si pu� trovare il coefficiente u
dal parametro di fit di secondo grado, che in questo caso dipende dalla
massa della carrucola.

Vorrei sapere se � corretto quello che ho scritto, io ho ottenuto valori
per u confrontabili calcolandoli con i due metodi (dalla velocit� di
regime o dal fit parabolico), ma viste le cattive condizioni
dell'esperimento* e il fatto che invece su pi� misure i risultati hanno
una deviazione standard di meno del 4%, viene tutto troppo bene, ci deve
essere qualche errore :-)

grazie e ciao
---------------
* il filo era un po' elastico, la carrucola faceva strisciare un po' il
filo, le superfici non erano molto omogenee...
-- 
GN/\PPA
"E' meglio accendere una candela che maledire l'oscurit�"
http://amnestypiacenza.altervista.org
Received on Sun Jun 10 2007 - 17:01:56 CEST

This archive was generated by hypermail 2.3.0 : Mon Feb 10 2025 - 04:23:35 CET