Re: Resistenza all'urto al cambio di SRI

From: Giorgio Bibbiani <giorgiobibbiani_at_TIN.it>
Date: Tue, 20 Feb 2024 13:33:09 +0100

Il 20/02/2024 01:23, Bruno Cocciaro ha scritto:
> Il 11/02/2024 17:23, Giorgio Bibbiani ha scritto:
>
>> Detto meglio, dato che la velocità del sistema del c.d.m. rispetto a K'
>>
>> dipende anche dai valori delle 2 masse, è prevedibile che il valore di
>>
>> p_cm relativo a quel sistema dipenda anch'esso dalle 2 masse...
>
> ...
>
> Il punto non è che p_cm dipenda dalle masse, m e M.
>
> Il punto è che, come hai fatto notare tu correggendo quanto avevo detto io, il problema è *cinematico*.

Si suppone che il proiettile di massa m spezzi il vetro di massa M

solo se la sua velocità relativa al vetro e diretta perpendicolarmente

al vetro sia maggiore di v_max.


Siano v e V le velocità di proiettile e vetro relative a un riferimento K', allora

la velocità del riferimento del c.d.m. rispetto a K' dipende da m e M, trasformando

v e V nel riferimento del c.d.m. anche le velocità trasformate v_cm e V_cm

dipenderanno da m e M, e anche la condizione che stabilirà se per una data v_cm

il vetro allora si spezzerà dipenderà da m e M: il problema _è_ di cinematica,

ma le masse compaiono necessariamente perché abbiamo (hai...;-)

deciso di risolverlo nel riferimento  del c.d.m..


Dato che ciò che si calcola nel caso generale relativistico (risultato che ho già scritto)

deve valere anche nel limite non relativistico, provo a convincerti con il

calcolo immediato nel caso n.r.:

relativamente al riferimento del vetro, il riferimento del c.d.m. ha velocità

v m / (m + M), la velocità del proiettile trasformata al c.d.m. è v_cm = v M / (m + M),

la condizione che deve essere soddisfatta perché il vetro non si spezzi è

v_cm < v_max M / (m + M).

Come vedi, il problema rimane di cinematica, ma le masse compaiono

nella soluzione perché abbiamo arbitrariamente deciso di risolverlo

relativamente al riferimento del c.d.m..

Ciao

-- 
Giorgio Bibbiani
Received on Tue Feb 20 2024 - 13:33:09 CET

This archive was generated by hypermail 2.3.0 : Wed Feb 05 2025 - 04:23:16 CET