Calcolare il volume max di un cilindro inscrivibile in un cono r=10cm.
i=cm, 1=10cm.
(20i/3)^2*Pi*10i/3 = 465.421i^3. Per qualsiasi i.
x= -6.66. | x=2/3i
| |
-------.|<---------- 4/3i----------->| 1/3i | <-- y=1/i=10i
| \ | | | / |
| \ | | |<--- h_ci=(3-2)/3i.
| \ | ___._____|<-rc=2/3i ->|<-----| y=2/3i.
| \ | / |
| | \ | / | |
| | \ | / | |
| | \ | ---- / -------|-------|<- y= 1/3i
| | \ | / | |
| | \ | / | |
-1/3i |_._._.._._._o_._._._ ._._|_._._| __ > X
1/3i | 4/3i | 1/3i |
1/3i + 4/3i+ + 1/3i = 2
V_Co.=(1/3i)^3*Pi/3=1000i^3*Pi/3=1047.19cm^3.
V_ci. = (2/3i)^2*Pi *(3/3i -2/3i)= 465.421.cm^3.
Socratis.
Received on Sat Jan 21 2012 - 11:41:37 CET
This archive was generated by hypermail 2.3.0
: Fri Nov 08 2024 - 05:10:17 CET