Per Elio Fabbri

From: Socratis <socratis_at_alice.it>
Date: Sat, 21 Jan 2012 11:41:37 +0100


Calcolare il volume max di un cilindro inscrivibile in un cono r=10cm.
i=cm, 1=10cm.

(20i/3)^2*Pi*10i/3 = 465.421i^3. Per qualsiasi i.


       x= -6.66. | x=2/3i
           | |
  -------.|<---------- 4/3i----------->| 1/3i | <-- y=1/i=10i
 | \ | | | / |
 | \ | | |<--- h_ci=(3-2)/3i.
 | \ | ___._____|<-rc=2/3i ->|<-----| y=2/3i.
 | \ | / |
 | | \ | / | |
 | | \ | / | |
 | | \ | ---- / -------|-------|<- y= 1/3i
 | | \ | / | |
 | | \ | / | |
  -1/3i |_._._.._._._o_._._._ ._._|_._._| __ > X

 1/3i | 4/3i | 1/3i |
 1/3i + 4/3i+ + 1/3i = 2

V_Co.=(1/3i)^3*Pi/3=1000i^3*Pi/3=1047.19cm^3.
V_ci. = (2/3i)^2*Pi *(3/3i -2/3i)= 465.421.cm^3.


Socratis.




Received on Sat Jan 21 2012 - 11:41:37 CET

This archive was generated by hypermail 2.3.0 : Fri Nov 08 2024 - 05:10:17 CET